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Let 0/RN (N�2) be an unbounded domain, and Lm be a homogeneous linear
elliptic partial differential operator with constant coefficients. In this paper we show,
among other things, that rapidly decreasing L1-solutions to Lm (in 0) approximate
all L1-solutions to Lm (in 0), provided there exist real numbers R j � �, =�0, and
a sequence [ y j] such that B( y j, =) & 0=< and

|4( y j, R j , RN "0)|
RN

j
>= \ j,

where | } | means the volume and

4(z, R, D) := .
x # B(z, R) & D {z+t

(x&z)
|x&z|

; t�1= ,

for z # RN, R>0 and D/RN. For m=2, we can replace the volume density by the
capacity-density.

It appears that the problem is related to the characterization of largest sets on
which a nonzero polynomial solution to Lm may vanish, along with its (m&1)-
derivatives. We also study a similar approximation problem for polyanalytic
functions in C. � 2000 Academic Press

Key Words: polyanalytic functions; higher order elliptic pde; L1-approximation;
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NOTATION

C a generic constant

/D the characteristic function of the set D, (D/Rn, n�2)

subset the closure of subset in the topology of the larger set

�D the boundary of a set D
|D| n-dimensional volume of the set D
Br(x) [ y # Rn : | y&x|<r]
supp( f ) the support of the function�distribution f
d(x) distance function

cp &(( p&1)! ?)&1

L1(0) Integrable functions over 0
1(z) 1p(z)=cp z� p&1z&1 (Fundamental solution to � p��z� p)

Ap(0) [ f # L1(0); � pf��z� p=0 in 0]
Sk, p(0, z0) span[G(i)

k ( } , w); w � (0 _ [z0]), i=0, ..., p&1]
Gk(z, w) zk1(z&w)

dA The Lebesgue measure in the plane

Ej (w) |
0

g(z) 1 ( j)(z&w) dA

$y(x) Dirac measure concentrated at y

G� k(z, w) cp(z� &w� ) p&1 \ 1
(z&w)

& :
k+ p

j=0

w j

z j+1+
S� k, p(0) span[G� (i)

k ( } , w); \w � 0 : i=0, 1, ..., p&1]

Lm Lm= :
|:|=m

a:
�:

�x: uniformly elliptic

K Fundamental solution to Lm

Ks(x, y) Ks(x, y, x0)=K(x& y)& :
|:|<s

1
:!

K (:)(x0& y)(x&x0):
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K� s(x, y) K� s(x, y, x0)=K(x& y)& :
|:|<s

1
:!

K (:)(x&x0)( y&x0):

F F(0)=[ f # L1(0); Lm( f )=0 in 0]

F+ F+(0)=[ f # L1(0); Lm( f )�0 in 0]

Fs(0, x0) span[K (:)
s ( } , y); y � 0, |:|�m&1],

F+
s (0, x0) span+[\K (:)

s ( } , y); y � 0, |:|�m&1 and Ks( } , y); y # 0]

F� s(0, x0) span+[K� (:)
s ( } , y); y � 0, |:|�m&1]

F� +
s (0, x0) span+[\K� (:)

s ( } , y); y � 0, |:|�m&1 and K� s( } , y), y # 0]

Us( y) U g
s ( y)=|

0
K� s(x, y) g(x) dx

4(z, R, D) .
x # B(z, R) & D {z+t

(x&z)
|x&z|

; t�1=
2 p p-times iterated Laplacian

0. INTRODUCTION

Consider a bounded domain 0/C, fix a boundary point z0 # �0, and
let L1(0) denote the set of all functions integrable over 0. Let also
A1(0) denote the analytic functions in L1(0). Then it is well-known that
L1-analytic functions that vanish continuously at z0 (we denote this by S1)
are dense in A1(0), provided z0 is a non-isolated boundary point.

In the case of 0 being unbounded, one can reverse the above statement
to the situation of rapidly decreasing functions at infinity. Namely, if the
infinity point is a non-isolated boundary point of �0, then the subset of
L1-analytic functions that decrease as O( |x|&k) at infinity, is dense in
A1(0); here k�3.

Now let 0 # RN (N�2) be a bounded domain. Let also Lm be a linear
elliptic partial differential operator Lm of order m (an even positive integer).
Then we want to analyze whether the subset of L1-solutions to Lm (in 0),
vanishing continuously at some boundary point x0 # �0, is dense in the space
of L1-solution to Lm (in 0).

Similarly one can consider an unbounded domain 0 in RN, having the
infinity as a boundary point. The question to raise, then, is whether
the subclass of rapidly decreasing L1-solutions approximate all other solu-
tions.
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The possession of such an approximation property, for unbounded
domains in RN, is heavily reliant on the thickness of the complement of the
domain under consideration. It turns out that the problem has different
features depending on the space dimension; e.g., for N=2 we show that
such an approximation is possible if the infinity point is a non-isolated
boundary point. However, for N�3 the problem is quite different and by
no means elementary. It appears to be connected with the problem of
unique continuation for polynomial solutions to Lmu=0.

The consideration of such a problem is motivated by two different
problems. The first motivation is given by certain integral identities arising
in some free boundary problems for the Laplacian or, if considered in C,
for the Cauchy operator (see [sh2, gs, sa2, ks2, ks3]). The second motiva-
tion comes from local and�or global estimates for solutions to certain
(overdetermined) elliptic problems. Indeed, let 0 be an unbounded domain
in RN and suppose u satisfies (in the sense of distributions)

Lmu= g/0 , in RN u=0 in RN"0, |u(x)|�C(1+|x|m+k),

where g is a given bounded function in RN, and k, C are positive constants.
It is interesting, then, to know whether

u(x)�(1+|x|m)(A log(2+|x| )+B), (0.1)

for some A, B�0.
As we will show, this problem (when A>0) is strongly connected with

the approximation problem studied here and its solve-ability, in turn,
depends on the thickness of the complement of 0 near the infinity point.
However, if we in (0.1) require A=0, then the problem becomes very hard
and it is no longer naturally related to the approximation problem (see
[ks1, hks]).

The approximation problem for both harmonic and analytic functions
has been considered earlier by several people. For analytic functions
see [be, sa1, sh1]; for harmonic and subharmonic functions see [sa2, ka,
shg].

The plan of this paper is as follows. In Section 1, we will give the results
for polyanalytic functions. Here we choose to give some proofs in detail, as
they will be standard and repetitive technicalities in all future results. These
kinds of detailed proofs will be omitted later.

In Section 2, we treat the problem in N-space dimension for uniformly
elliptic operators. The local and global results, as well as the two dimen-
sional and higher dimensional results, are separated. Finally, in Section 3,
we discuss possible extensions and generalizations.
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1. POLYANALYTIC FUNCTIONS IN C

1.1. Bounded Domains

For any fixed integer p�1 let cp=&1�( p&1)! ?, 0 be a bounded
domain in C, and

1(z)=1p(z)=cp
z� p&1

z
.

Define

Ap(0)=[ f # L1(0); � pf��z� p=0 in 0],

and for z0 # �0, and k�0 set

Sk, p(0, z0)=span[G (i)
k ( } , w); \w � (0 _ [z0]), i=0, ..., p&1],

where Gk(z, w)=Gk(z, w, z0)=(z&z0)k 1(z&z0&w), and f (i)=�if��z� i, for
any i-times differentiable function f.

Observe that all functions in Sk, p(0, z0) vanish, with their derivatives of
order (k&1), at z0.

Theorem 1.1. Let 0 be a bounded domain in C, and z0 # �0 be a
non-isolated boundary point. Then

Sk, p(0, z0)=Ap(0), \k�0,

where the closure is in L1-metric.

The proof of this theorem for the case k=0 is due to L. Bers [be]. The
general case is close to that of Bers. The main idea is the use of a family
of cut-off functions previously used by Ahlfors�Bers.

We also refer to the works of A. O'Farrell [of1-2] and J. Verdera [v]
for uniform approximation by polyanalytic functions and solutions of
elliptic equations.

Proof of Theorem 1.1. We assume without loss of generality that z0=0,
and k=1; the general case is proven similarly. It suffices, by the Hahn
Banach theorem, to prove that any bounded linear functional (represented
by an L�-function g) annihilating S1, p , also annihilates Ap(0). We thus
suppose that for j=0, ..., p&1,

|
0

g(z) G( j)(z, w) dA=0 \w # C"(0 _ [0]),
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where dA is the Lebesgue measure in the plane. Next, using the continuity
of the above integral in w (this is known and elementary to show) and the
fact that the origin is a non-isolated boundary point, we let w � 0 to obtain

|
0

z1 ( j)(z) g(z) dA=0, ( j=0, ..., p&1)

which amounts to

|
0

z� jg(z) dA=0, \( j=0, ..., p&1). (1.1)

Next for w # C"(0 _ [0]),

0=|
0

g(z) G( j)(z, w) dA=|
0

zg(z) 1 ( j)(z&w) dA

=|
0

(z&w) g(z) 1 ( j)(z&w) dA+w |
0

g(z) 1 ( j)(z&w) dA

= :
p&1& j

i=0

Ci (&w� ) p&1& j&i |
0

z� ig(z) dA+w |
0

g(z) 1 ( j)(z&w) dA,

where Ci=( p&1& j
i )(&?( p&1& j)!)&1, and j=0, ..., p&1. Using (1.1) and

dividing the above by w we will have that the functions

Ej (w) :=|
0

g(z) 1 ( j)(z&w) dA ( j=0, ..., p&1)

defined in C, vanish on C"(0 _ [0]). Hence by continuity (since the origin
is a non-isolated boundary point of �0)

Ej (w)=0 \ j=0, ..., p&1, and w # C"0. (1.2)

To complete the proof we need to show (and this is a standard proce-
dure in approximation theory) that any annihilator of the fundamental
solution 1( }&w) (where w � 0) along with its derivatives up to order
( p&1) is also an annihilator of all Ap(0). For this purpose let [|n]�

n=1 be
a sequence of C�-functions with support in 0 and with the property that
|n=0 in a neighborhood of �0, limn � � |n(z)=1 for z # 0, and for
|:|�1,

|D:|n(z)|�
C:

n
(d(z))&|:| |log d(z)| &1, (1.3)
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where d(z)=dist(z, �0), : is multi-index and D: is the partial derivative
with respect to the real variables x1 , x2 (z=x1+ix2). For existence of
such functions we refer to [ah]; see also [be] and [kr]. By (1.2) and the
definition of the function E0 , we will have

� pE0

�z� p (z)= g in 0, (1.4)

in the sense of distributions, and also

lim
0 % z � �0

� j E0

�z� j (z)=0, ( j=0, ..., p&1).

Now using this and observing that Ej (z)=(&1) j E ( j)
0 (z), we may deduce

that for z # 0

|Ej (z)|�(d(z)) p& j&1 &Ep&1(z)&� , ( j=0, ..., p&2) (1.5)

where & }&� means the supremum norm, and it is taken on the segment
[z, z$]; with z$ being the nearest point, on �0, to z. Now well-known
estimates for the Cauchy's integral (see [kr]) implies

|Ep&1(z)|�Cd(z) |log d(z)|, (C>0, fixed)

which in conjunction with (1.5) implies

|Ej (z)|�C(d(z)) p& j |log d(z)|, ( j=0, ..., p&1). (1.6)

Next let f # Ap(0). Then, using (1.4) and the cutoff functions |n , we
have

|
0

fg dA=lim
n |

0
fg|n dA=lim

n |
0

f
� pE0

�z� p |n dA.

By the standard Leibnitz formula we obtain

|
0

f
� pE0

�z� p |n dA=|
0

f
� p

�z� p (E0|n) dA& :
p&1

j=0
\ p

j + (&1) j |
0

fE j| ( p& j)
n dA.

(1.7)

where we have used Ej (z)=(&1) j E ( j)
0 (z). Now the first integral to the

right side in (1.7) vanishes, through integration by parts, since f # Ap , and
the rest of the terms are bounded (according to (1.3) and (1.6)) by

C
n

:
p&1

j=0
|

0
| f (z)| (d(z)) p& j |log d(z)|

dA
(d(z)) p& j |log d(z)|

, (C>0, fixed)
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which tends to zero as n � �. Hence

|
0

fg dA=0 \ f # Ap .

This completes the proof. K

Example 1.1. This example concerns the sharpness of the above result.
Let :=(:0 , ..., :p&1) be the solution to M:=b, where M is the p_p
matrix with entries amn=( p+n

m ), (m, n=0, ..., p&1) and the vector b=
(b0 , ..., bp&1) has the components bm=( p&1

m ).

Let us define

v(z) :=cp \ :
p&1

j=0

:j |z|2 j z� p&
z� p&1

z +
h(z) :=cp \ :

p&1

j=0

:j ( p+ j) } } } (1+ j) |z| 2 j+ .

Then one may easily verify that

� pu
�z� p (z)=h(z)&$0 in B(0, 1), (as distributions)

� ju
�z� j (z)=0 on �B(0, 1), ( j=0, ..., p&1)

where $0 is the Dirac mass concentrated at the origin.
To this end, for fixed r>0 and z0 # C, we define ur(z) :=r pu((z&z0)�r),

and hr(z)=h((z&z0)�r). Then one readily verifies

� pur

�z� p (z)=hr(z)&$0 in B(z0, r), (as distributions)

(1.8)
� jur

�z� j (z)=0 on �B(z0, r) ( j=0, ..., p&1).

Suppose now 0 is a bounded domain and z0 # �0 is an isolated boundary
point. Hence there exists r>0 such that B(z0, r)/0 _ [z0]. We define
gr(z)=hr(z) /B(z0, r) and the bounded linear functional

T: f � |
0

fgr dA,
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on L1(0). Then for f # Ap(0), and continuous up to z0, we can use
integration by parts to obtain, in combination with (1.8),

|
0

fgr dA=|
B(z0, r)

fhr dA=|
B(z 0, r)

f \� pur

�z� p +$0+ dA= f (z0).

It thus follows that the bounded linear functional T, vanishes on S1, p(0, z0)
but not on Ap(0).

1.2. Unbounded Domains

Throughout this section we will assume that B(0, 1) & 0=<. This
geometrical restriction is, indeed, a technicality and can be removed by
means of some new techniques of [km]; we omit discussing this matter.
Let now � # �0 be a non-isolated boundary point, i.e. there exists a sequence
[zj]/�0, with limj |zj |=�. We will prove that all L1-polyanalytic func-
tions in 0 can be approximated by the subset of rapidly decreasing ones at
the infinity. Indeed, let

G� k(z, w)=cp(z� &w� ) p&1 \ 1
(z&w)

& :
k+ p

j=0

w j

z j+1+ .

Then, using the fact that the sum above is the (k+ p)-th Taylor polynomial
of (z&w)&1 near w=0, as a function of w, we obtain for each fixed w

G� (i)
k (z, w)�

C |w| (k+ p+1&i)

|z|k+3 \ |z|>2 |w|.

Since also B(0, 1) & 0=<, we conclude G� k(z, w) # L1(0) as a function of
z, for all k�0, and w # C. It is also easy to see that G� k is a fundamental
solution to � p��z� p for w, z{0. More precisely � pG� k(z, w)��z� p=$w(z), for
w, z{0.

Remark 1.1. Let g # L�(RN), and suppose 0 & B(0, 1)=<. Define

v(w)=|
0

g(z) G� k(z, w) dA.

Then it follows that � pv��w� p= g/0 , and hence v~ :=� p&1v��w� p&1 satisfies
�v~ ��w� = g/0 . Indeed, v is the Cauchy integral of g/0 . Now simple calculations
(see [kr; Section 3, Lemma 1.4]) reveals |v~ (w)|�C( |w|+1) log( |w|+2), and
hence |� jv��w� j|�C( |w|+1) p& j log( |w|+2).
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Next define

S� k, p(0) :=span[G� (i)
k ( } , w); \w � 0 : i=0, 1, ..., p&1].

Then we claim the following.

Theorem 1.2. For any unbounded domain 0/C, with B(0, 1) & 0=<,
there holds

S� k, p(0)=Ap(0), \k�0, (1.9)

provided the infinity point is a non-isolated boundary point.

Proof. First suppose k�1. Then, as in the proof of Theorem 1.1, let
g # L�(0) represent the linear functional which is zero on S� k, p , i.e. for
(i=0, 1, ..., p&1)

|
0

g(z) G� (i)
k (z, w) dA=0, \w � 0. (1.10)

In order to prove that g also annihilates the whole space Ap we show
first that for i=0, 1, ..., p&1,

E� i, k&1(w) :=|
0

g(z) G� (i)
k&1(z, w) dA,

vanishes on C"0.
Now rewriting (1.10) we have

|
0

g(z) G� (i)
k&1(z, w) dA

= :
p&1&i

s=0

Cs(&w� ) p&1&i&s wk+ p |
0

g(z) z� s

zk+ p+1 dA, \w � 0,

where Cs=( p&1&i
s )(&?( p&1&i)!)&1. Dividing the above by w2p&1&i&l+k

(with l=0) and letting w � � (through C"0) we will have

0=|
0

g(z) z� l

zk+ p+1 dA, (for l=0).

Repeating this argument for l=2, 3, ...p&1, gives the desired result. Hence
E� i, k&1(z) vanishes on C"0 for i=0, 1, ..., p&1. In the same vein, we can
show that E� i, k&2 , ..., E� i, 0 vanish on C"0 for i=0, 1, ..., p&1.

Now E� 0, 0 plays the same role as E0(z) did in Theorem 1.1. Thus, to com-
plete the proof one has to repeat the argument in the proof of Theorem 1.1,
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using cutoff functions |n . However, as the domain is unbounded, we need
also to cut off the domain so that it becomes bounded. To this end, one
introduces a different type of cutoff functions \m (having compact support),
which in conjunction with Remark 1.1 will bring the proof into a comple-
tion. As it might become repetitive we leave the details of this part to the
reader (see [sa1, Lemma 3], for p=1). K

Example 1.2. Let 0 be any domain in C with a nice (analytic) bound-
ary. A function S(z) is said to be the Schwarz function of �0 if it is analytic
in an interior neighborhood of �0 and S(z)=z� on �0; see [sh2]. In order
to generalize this notion for p-analytic functions we define Sp to be the
p-Schwarz function for �0 if it is p-analytic in an interior neighborhood of
�0 and if (� j��z� j )(S(z)&z� p)=0, for j=0, ..., p&1, and z # �0. Let now S
be the Schwarz function of �0 then one may easily verify, for appropriate
choices of [;j],

Sp(z)= :
p

j=1

;j z� p& jS j (z),

is the p-Schwarz function of �0. It is also noteworthy that

supp \ � p

�z� p Sp(z)+/supp \ �
�z�

S(z)+ ,

where supp denotes the support of the function�distribution, and

p } } } ( p& j) Sp& j=
� jSp

�z� j .

The latter in turn implies that if S1 (the Schwarz function) grows as |z|m

then Sp grows like |z| p+m&1. We will use this fact in the next example
where we show that in Theorem 1.2, the assumption that the infinity point
is a non-isolated boundary point is indispensable, and hence Theorem 1.2
is sharp.

Example 1.3. Let m�1 be an integer. Then, according to an example
of B. Gustafsson (see [sh3, Theorem 2]) there is a domain D in C with
analytic boundary, and bounded (and connected) complement. Moreover,
D admits a Schwarz function S(z), which is analytic in D, and which grows
like |z|m at �. Hence by Example 1.2 we will have that the p-Schwarz func-
tion of �D exists and is p-analytic in D with growth p+m&1 at �. Now
by defining u(z) as

u(z)=(z� p&Sp(z))�p!
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we may conclude, by the above discussion, that for any non-negative integer
k there is a function u(z) and a domain D such that for j=0, ..., p&1

� pu
�z� p (z)=1 in D

� ju
�z� j (z)=0 on �D, (1.11)

sup
|z| �R

|u(z)|rCRR p+k large R,

where 0<C0�CR�C1<� for some constants C0 , C1 .

Let now 0 be any domain with bounded complement. Suppose, z0 # C"0
and define, by translation and scaling,

ur(z)=u(r(z&z0))�r p, Dr :=[z: r(z&z0) # D],

were r>0 is taken small enough to guarantee Dr /0. In order to show the
sharpness of Theorem 1.2, let the domain 0 have the property that
S� k, p(0)=Ap(0), for some k>0. Also let ur be as above with growth
k+ p, and g=/Dr

# L�(0). Then by Greens theorem and (1.11) one can
show

|
0

G� k(z, w) g(z) dA=0, \w � 0.

Now by the assumption that S� k, p(0)=Ap we conclude that

|
0

G� 0(z, w) g(z) dA=|
Dr

G� 0(z, w) dA=0, \w � 0,

and by unique continuation (C"Dr is connected) also on C"Dr .
Now define

u$r(w)=|
Dr

G� 0(z, w) g(z) dA \w # C.

Then � pu$r ��z� p=/Dr
in C, and u$r=0 in C"Dr . Hence

� p(ur&u$r)
�z� p =/Dr

&/Dr
=0 in C,
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and ur&u$r=0 in C"Dr . Hence by the unique continuation u$r=ur . Next
using standard estimates for the Cauchy's integral (see [be]) we will have

|ur(z)|=|u$r(z)|�|
Dr

|G0(w, z) g(w)| dA�C( |z|+1) p log( |z|+2). (1.12)

Hence if we choose k�1, then by (1.11), ur has approximately a growth of
order p+1, contradicting (1.12). This shows that S� k, p(0){Ap(0).

2. HOMOGENEOUS ELLIPTIC EQUATIONS IN RN

2.1. Generalized Kernels

In RN, consider a homogeneous linear elliptic partial differential operator
Lm of (even) order m, and with constant coefficients

Lm= :
|:| =m

a:
�:

�x: ,

where

:
|:|=m

a:!:{0 for ! # RN and |!|{0.

Let now K be the usual fundamental solution for Lm with singularity at the
origin. Then K can be expressed as follows.

(i) If N is odd or if N is even and N>m, then

K(x)=|x|m&N H0(x),

where H0(tx)=H0(x) if x{0, t>0.

(ii) If N is even and N�m, then

K(x)=|x|m&N H0(x)+H1(x) log |x|,

where H1 is a homogeneous polynomial of degree (m&N), (see [jo]).

We also define two different fundamental solutions ``generalized kernels''
Ks and K� s as

Ks(x, y)=Ks(x, y, x0)=K(x& y)& :
|:|<s

1
:!

K (:)(x0& y)(x&x0):, s>0,

K� s(x, y)=K� s(x, y, x0)=K(x& y)& :
|:|<s

1
:!

K (:)(x&x0)( y&x0):, s>0,

K0(x, y)=K0(x, y, x0)=K(x& y),
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where K (:)(x)=�(:)K(x)��x:. It is easy to see that Ks and K� s satisfy the
following:

LmKs(x, y)=$y(x), ( y{x0)

LmK� s(x, y)=$y(x), (x{x0)

K (:)
s (x0, y)=0, \ |:|<s,

|K� (:)
s (x, y)|�C

| y&x0| s(A1+B1 log | y&x0| )
|x&x0| |:| +s+N&m , \:, |x|�2 | y|,

where $ is the Dirac measure, A1=1, B1=0 for N odd or for N>m, and
A1=0 and B1=1 for N even and N�m.

Obviously for a given domain 0, K� s is not necessarily in L1(0),
whatever s may be. This situation happens if the domain is unbounded and
x0 # 0� . Indeed, K� s is locally non-integrable, when s>m, and globally non-
integrable when s�m. To overcome this difficulty we assume that there is
a constant r>0 such that B(x0, r)/RN"0. This assumption will assure the
local integrability for any s and by choosing s>m we will have the global
integrability. In the sequel it is tacitly understood that if we consider the
kernels K� s on an unbounded domain 0, with 0� {RN, then x0 is chosen in
the interior of RN"0� . So that there will be no problem with the local
integrability of K� s . We are thus forced to assume 0� {RN. This will also be
assumed through the rest of the paper. For a thorough treatment of the
Laplacian case we refer to the paper of L. Karp [ka].

For a given domain 0, we set

F :=F(0)=[ f # L1(0); Lm( f )=0 in 0],

F+ :=F+(0)=[ f # L1(0); Lm( f )�0 in 0].

If 0 is bounded with x0 � 0 we set

Fs :=Fs(0, x0)=span[K (:)
s ( } , y), y � 0, |:|�m&1],

F+
s :=F+

s (0, x0)=span+[\K (:)
s ( } , y),

y � 0, |:|�m&1 and Ks( } , y), y # 0],

where K (:)
s ( } , y)=K (:)

s ( } , y, x0). For unbounded 0 with x0 # RN"0� , we
define

F� s :=F� s(0, x0)=span[K� (:)
s ( } , y), y � 0, |:|�m&1],

F� +
s :=F� +

s (0, x0)=span+[\K� (:)
s ( } , y),

y � 0, |:|�m&1 and K� s( } , y), y # 0],
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where K (:)
s ( } , y)=K (:)

s ( } , y, x0), and span (span+) means all finite linear
combinations (with positive coefficients). In addition to these we define the
``generalized potential'' Us for an unbounded domain 0 with x0 � 0� , and an
L� function g in 0, by

Us( y)=U g
s ( y, x0) :=|

0
K� s(x, y, x0) g(x) dx.

The following results will be needed for our main theorems.

Theorem 2.1. The generalized potential Us=U g
s , with bounded g, satisfies

U (:)
m+1( y)�C( | y|+1)m&|:| log( | y|+2), \ |:|<m.

A proof of this theorem for the case of Laplacian can be found in [ka].
For Lm as above one may use similar techniques as that of [ka] to prove
Theorem 2.1.

Theorem 2.2. Let 01 be a bounded domain and 02 an unbounded one
in RN. Suppose also 0� 2{RN, and let x0 � 0� 2 . Then

F0(01)=F(01), F+
0 (01)=F+(01),

F� m+1(02 , x0)=F� (02) F� +
m+1(02 , x0)=F� +(02).

We will not give a proof of this theorem. For the Laplace operator we
refer to [sa] (unbounded domains in R2), [sa] (bounded domains in RN)
and [ka] (unbounded domains in RN). For general operators similar
techniques as those in ([sa, ka]) work.

2.2. Bounded Domains

Theorem 2.3. Let 0 be a bounded domain in RN, and x0 a non-isolated
point of RN"0. Then for s�0

F+
s (0, x0)=F+(0), Fs(0, x0)=F(0).

Proof. We only give the proof for the class F1 . For s>1 or the class
F+

s , a similar argument works. Also for s=0 Theorem 2.2 applies. Let us
again consider a functional, which is zero on F1 , and denote by g the L�-
function that represents the functional. Then, for |:|<m and y � 0 _ [x0],

0=|
0

K (:)
1 (x, y) g(x) dx=|

0
K (:)

0 (x, y) g(x) dx&K (:)
0 (x0, y) |

0
g(x) dx.

(2.1)
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Since |K (:)
0 (x0, y)|rC |x0& y| &|:|&N+m (A1+B1 log |x0& y| ), (where

A1=1, B1=0 for N odd or for N>m, and A1=0 and B1=1 for N even
and N�m) we take |:|=m&1, multiply both sides of (2.1) by
|x0& y|N&1 (A1+B1 log |x0& y| ), and let y � x0, through RN"0 (this is
possible since x0 is a non-isolated point of RN"0), to obtain

|
0

g(x) dx=0.

Putting this into (2.1) we will have

|
0

K (:)
0 (x, y) g(x) dx=0 \ y � 0 _ [x0], |:|=m&1,

and by continuity also at x0. Repeating this argument for |:|=m&2,
m&3, ..., 0, we wind up with

|
0

K (:)
0 (x, y) g(x) dx=0 \y � 0 and |:|�m&1.

Hence g annihilates F0 . The result now follows by applying Theorem 2.2. K

Example 2.1. Theorem 2.3 is sharp, in the sense that the boundary
point in question has to be non-isolated. Indeed, let x0 be an isolated
boundary point. Then there is r>0 such that B(x0, r)/0 _ [x0]. Now
take g(x)=/B(x 0, r) then for any subharmonic function f on 0 (and con-
tinuous on 0� )

|
0

f (x) g(x) dx=|
B(x0, r)

f (x) dx�|B(x0, r)| f (x0), (2.2)

where |B(x0, r)| means the volume of the ball B(x0, r). Now let Lm be the
Laplacian, and F+ be the class of integrable subharmonic functions on 0.
Then (2.2) gives that the functional

T : f � |
0

f (x) g(x) dx,

is nonnegative on F+
1 (0, x0). Whence for f#&1 ( # F+(0)),

T( f )=| f (x) g(x) dx=|
B(x0, r)

f dx=&|B(x0, r)|<0.

This proves the sharpness of the theorem.
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Example 2.2. It is not easy to give examples similar to that of Example
2.1 for general operators. The problem is to find a function u satisfying

(Lm(u)+$0)=: g # L�(B(0, 1), u(:)=0 on �B(0, 1), |:|�m&1.

Having proven the existence of such a function u, one repeats the argument
in Example 1.1. However, for p-times iterated Laplacian Lm=2 p (m=2p),
one can give an explicit expression for u. Namely,

u(x)=\ :
2p&1

j=0

:j |x|2 j&K(x)+ ,

where K is the fundamental solution for 2p, and :j are chosen appropriately
to ensure the boundary condition u(:)=0 on �B(0, 1) ( |:|�m&1).

2.3. Unbounded Domains in R2

Let us now consider an unbounded domain 0 in the plane. We will pay
attention to situations where rapidly decreasing L1-solutions (at infinity)
of Lm will approximate all other solutions.

Theorem 2.4. Let 0 be an unbounded domain in R2, with x0 � 0� .
Suppose, moreover, the infinity point is a non-isolated boundary point. Then,
for s�m+1,

F� s(0, x0)=F� (0).

Proof. As before, for an annihilator g # L�(0) of F� s let Us=U g
s be the

generalized potential with density g. Then

Lm(Us)= g/0 in R2, and U (:)
s =0 on R2 "0, (2.3)

for |:|�m&1. Now one may rewrite Us as

Us( y)=Um+1( y)& :
s&1

i=m+1

Pi ( y), (2.4)

where

Pi ( y)= :
|:|=i

b:( y&x0):,

with

b:=
1
:! |0

K (:)(x&x0) g(x) dx.
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and Lm(Pi)=0 in R2. Now in view of Theorem 2.2 and expression (2.4) it
suffices to show Pi #0 for all m+1�i�s&1.

By the assumption that the infinity point is a non-isolated boundary
point there is a sequence [ y j] such that y j # �0 and | y j| � �. Thus, by
the boundary conditions in (2.3), for all such y j we have

U (:)
m+1( y j )= :

s&1

i=m+1

P (:)
i ( y j ), \ |:|�m&1. (2.5)

Now let z j= y j�| y j | be the projection of y j on the unit sphere. Then for a
subsequence (which we relabel as the original sequence) z j converges to a
point z0 on the unit sphere. Dividing both sides of (2.5) by | y j | s&|:| &1

(s&1�m+1) and letting j tend to the infinity we obtain, using Theorem
2.1 and the homogeneity of P(:)

i ,

P (:)
s&1(tz0)=0, \t # R, and |:|�m&1.

Hence Ps&1 satisfies

Lm(Ps&1)=0, and P (:)
s&1=0 on l0 , \ |:|�m&1,

where l0=[tz0, t # R]. Hence, by the Cauchy Kowalewski theorem,
Ps&1 #0. Similarly one can prove Pi #0 for all m+1�i�s&2. This
proves the theorem. K

2.4. Unbounded Domains in RN.

The situation for unbounded domains in RN, for N�3, is rather different
from that of R2 and also more complicated. In this case, the Cauchy�
Kowalewski theorem (see the final step in Theorem 2.4) does not apply
anymore, unless the limit set of the scaling of RN"0 is an (N&1)-dimen-
sional analytic hypersurface. This forces us to use another kind of unique-
ness theorem. For second degree operators there are uniqueness theorems,
expressed in terms of capacity-density (see Condition B below), which gives
us the desired approximation theorem with very weak hypotheses. The lack
of such results for higher degree operators, undermines similar conclusion
for Lm with m>2. However, we can still state some results with stronger
assumptions.

For any subset D of RN we define 4(z, R, D) to be the truncated cone

4(z, R, D) := .
x # B(z, R) & D {z+t

(x&z)
|x&z|

; t�1= .
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Condition A. A given domain 0 is said to satisfy Condition A if there
is a sequence of points [ y j] in RN"0, positive numbers Rj � �, and =>0,
such that B( y j, =) & 0=< and

|4( y j, R j , RN"0)|
|B(0, Rj)|

�=, \ j.

Condition B. Similarly a given domain 0 is said to satisfy Condition B
if there is a sequence of points [ y j] in RN"0, positive numbers Rj � �,
and =>0 such that B( y j, =) & 0=< and

cap(4( y j, R j , RN"0))
cap(B(0, Rj))

�=, \ j,

where cap(D) denotes the capacity of the set D in RN, see [la].

Lemma 2.5. Let Pk be a non-negative polynomial of degree k and
suppose it is polyharmonic of order p, i.e.,

2 pPk=0.

Then

k�2( p&1).

Proof. The proof of this lemma is an easy consequence of Almansi
expansion in combination with the orthogonality relation for spherical
harmonics. First observe that we may assume Pk is homogeneous of degree
k, since otherwise we consider Pk(Rx)�Rk and let R tend to infinity. Next,
Pk can be expressed as (see [ar])

Pk(x)= :
p&1

j=0

|x|2 j h j ,

where hj ( j=0, ..., p&1) are harmonic polynomials of degree k&2 j. Now
integrating the above expression over the unit sphere in RN and using the
non-negativity of Pk , we will have

0<|
|x|=1

Pk= :
p&1

j=0
|

|x|=1
hj .

Since for hj nonconstant � |x|=1 h j=0, we conclude that k&2( p&1)�0,
and thus the desired result. K
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Theorem 2.6. Let 0 be an unbounded domain in RN (N�2), with
x0 � 0� , and s�m+1. Then the following holds.

(i) If Lm=2 p (m=2p), then

F� +
s (0, x0)=F� +(0).

(ii) If m=2 and Conditions B holds or
(iii) if m�2 and Condition A holds or
(iv) if Lm=2 p (m=2p) and Condition B holds, then

F� s(0, x0)=F� (0).

Proof. Since both sets in case (i) are convex cones, we need to prove
that any non-negative functional on the smallest set is also non-negative on
the larger one. Recall the beginning of the proof of Theorem 2.4. Then we
need to show that if

Us�0 on RN, (2.6)

and satisfies (2.3), then the same is true for Um+1 . Now (2.4), (2.6) and
Theorem 2.1 imply

Ps&1( y)�Us&1( y)�C | y| s&2 log(2+| y| ) \y.

Dividing both sides of the above inequality by | y| s&2 and letting y � �,
we will have Ps&1�0 on RN. Since also 2 p(Ps&1)=0, we may conclude by
Lemma 2.1 that Ps&1 #0 and thus Us&1�0. Repeating the same argument
for Ps&2 , ..., Pm+1 , we will end up with Um+1�0, which is the desired
result.

To prove (ii) and (iii) we start once again at (2.4). We thus need to
prove Pi #0, for m+1�i�s&1. Now let k :=max[i: m+1�i�s&1,
Pi �0] and define

Dj :=[ y # B(0, 1); y j+R jy � 0] ( j=1, 2, ...).

By Taylor's formula, for any :,

P (:)
k ( y)=

1
Rk&|:|

j \P (:)
k ( y j+Rj y)& :

;i�:i

|;|<k

P (;)
k ( y j )

(Rj y);&:

(;&:)! + . (2.7)

Since Uk and Pk coincide in RN"0, they must be identical in the open set
RN"0� and consequently, for all ; (and not only for |;|�m&1) U (;)

k #

P(;)
k in B( y j, =) (/RN"0� ). In particular U (;)

k ( y j)=P (;)
k ( y j), for all ;.
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Using this and that U (:)
k ( y)=P (:)

k ( y) in RN "0, for |:|�m&1, we reduce
(2.7) to

P (:)
k ( y)=

1
Rk&|:|

j \U (:)
k ( y j+R jy)& :

;i�:i

| ;|<k

U (;)
k ( y j )

(Rj y);&:

(;&:)! + \y # D j

and for all |:|�m&1. Next we have the following assertion, which we
prove later.

Assertion. For Uk , K� k , and |:|�m&1 there holds

R (:)
j \U (:)

k ( y j+Rj y)& :

;i�:i

|;|<k

U (;)
k ( y j )

(Rj y);&:

(;&:)! +
=� (:)

y |
0

K� k(x, y j+R j y, y j ) g(x) dx.

By Assertion and the expression for P(:)
k , above, we have

P (:)
k ( y)=

1
Rk

j

� (:)
y |

0
K� k(x, y j+Rj y, y j ) g(x) dx \y # Dj , |:|�m&1.

Hence

|P (:)
k ( y)|�

1
Rk&|:|

j
|

0
|� (:)

y K� k(x, y j+R j y, y j )| | g(x)| dx

�
C

Rk&|:|
j

|
RN"B( y j, =)

|� (:)
y K� k(x, y j+Rj y, y j )| dx

�
C

Rk&|:|
j

|
RN"B(0, =)

|� (:)
y K� k(x, Rj y, 0)| dx

�
C

Rk&|:|
j

(Rj+1)k&1&|:| log(Rj+2) \ |:|�m&1, y # Dj ,

where in the last estimate we have used Theorem 2.1. Letting Rj � � we
conclude that

P (:)
k ( y)#0, \y # D0 , |:|�m&1,

where D0 :=lim Dj is the set of all limit points of sequences [x j ], x j # Dj .
Hence by the homogeneity of Pk we have for |:|�m&1, P (:)

k #0 in
4(0, 1, D0).
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Now Condition B implies

=�
cap(4( y j, R j , RN"0))

cap(B(0, R j )
=cap(4(0, 1, Dj)) \ j,

while Condition A gives

=�
|4( y j, Rj , RN"0)|

|B(0, Rj)|
=|4(0, 1, Dj)| \ j.

Next letting j tend to infinity it is not hard to verify that the above
inequalities imply

=�cap(4(0, 1, D0)), (2.8a)

=�|4(0, 1, D0)|. (2.8b)

Indeed, for the volume case we have

|lim Dj |�lim |Dj |,

and a similar conclusion holds for the capacity function; see e.g. [ks1,
(2.10)].

Now, for all |:|�m&1, in case (ii) we will have P (:)
k =0 in 4(0, 1, D0),

which according to (2.8a) has positive capacity. This is in contradiction
with a theorem of L. Robbiano and J. Salazar [rs], unless Pk #0 in RN.
In case (iii) we end up with a polynomial in RN whose zero set has positive
volume (by (2.8b)). This is indeed a contradiction, unless Pk #0.

As to the case (iv), we have

2 pPk=0 in RN and P (:)
k =0 in D0 ,

for |:|�2p&1. Hence the polynomial Q=2 p&1Pk satisfies

2Q=0 Q(:)=0 in D0 ,

where |:|�1. Now, by the assumption, (2.8b) is satisfied and thus the
result in [rs] can be applied to deduce Q=2 p&1Pk #0 in RN. Repeating
this argument with Qj=2 p& jPk , for j=2, 3, ..., p&1, we will have the
desired result. K

Proof of Assertion. Recall the definitions for K� k and Uk , and notice that

� (:)
y K� k(x, y, z)| y=z=0 and � (:)

y Uk(z, z)=0, for z # RN
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and for all |:|<k, provided x{z. To prove the assertion we fix y j and
define new functions

I1( y)=I1( y, y j)=U (:)
k ( y j+Rj y, x0)& :

;i�:i

|;|<k

U (;)
k ( y j )

(Rj y);&:

(;&:)!

and

I2( y)=I2( y, y j )=(� (:)
y Uk)( y j+Rj y, y j )

Now we claim

I1( y)#I2( y),

which gives the desired result.
To prove this we observe that I1&I2 solves Lm(I1&I2)=0 in RN and

hence is analytic in the entire space. It thus suffices to show that all
derivatives of I1 and I2 coincide at y=0, say. We remark that one may
prove the equivalence of these functions by more elementary but tedious
calculus.

Now for I1 we obviously have

�(_)I1(0)=R (_)
j U (:+_)( y j, x0)&R (_)

j U (:+_)( y j, x0)=0,

for |_|<k&|:|, and for |_|�k&|:|

�(_)I1(0)=|
0

(&1) (:+_)K (:+_)(x& y j) g(x) dx,

where the integral is bounded due to the fact that B( y j, =) & 0=<.
Similarly one obtains that �(_)I2(0)=U (:+_)( y j, y j )=0 for |_|<k&|:|,

and for |_|�k&|:|

�(_)I2(0)=|
0

(&1) (:+_) K (:+_)(x& y j) g(x) dx. K

Remark. As the above proof shows, we can extract a stronger result in
cases (ii)�(iv) than the one indicated in the theorem. Indeed, in these cases,
the approximation problem is reduced to the problem of finding (estimat-
ing) the largest possible number of different hyper-surfaces of dimension
�(N&2), on which a nonzero polynomial solution to LmP=0 may
vanish together with its (m&1)-derivatives.

Also, the restriction to 2 p, in case (i), depends on the lack of a similar
result as that in Lemma 2.1 for other operators Lm . However, we boldly
conjecture the following.
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Conjecture 1. Let Pk be a nonnegative polynomial of degree k and
satisfy LmPk=0, where Lm is uniformly elliptic as in Section 2. Then we
conjecture that there is a constant C(m, N) such that k�C(m, N). We also
suggest that C(m, N)�N(m&2).

We remark that for Lm=�m
1 + } } } +�m

N the polynomial P(x)=
(x1 } } } xN)m&2 has the property that LmP=0 and P�0. Moreover P is of
degree N(m&2). Wishful thinking suggests that this should be the only
case with the exact growth N(m&2).

Example 2.3 (N=2). Let N=2 and Lm=2 p, where m=2p. For a
given 0, we define the p-Schwarz potential of up(z) to be the function
(locally unique near �0) which is polyharmonic near �0 (at least in an
interior neighborhood), and (�:��x:)( |x|2p&up)=0, on �0 for all
|:|�2p&1.

Now let Sp be the p-Schwarz function defined in Example 1.2 and recall
Example 1.3, according to which for any constant k there is an unbounded
domain D (which depends on k) with a bounded complement, an analytic
boundary, and a p-Schwarz function of growth |z| p+k near the infinity
point. Since �D is analytic, it admits, by Cauchy�Kowalewski theorem, a
p-Schwarz potential up . Now it is not hard to realize (by uniqueness) that
p! Sp=� pup��z p. Since Sp is polyanalytic in D (Example 1.3), it follows
that up is polyharmonic in D. Moreover up behaves like |x|2p+k near
infinity. Now let k=s+1&2p. Then we can argue as in Example 1.3 to
conclude that for any 0 with bounded complement and x0 � 0�

F� s+1(0, x0){F� s(0, x0) \s�m+1.

Example 2.4. (N=3) Let 0/R3 be such that R3 "0 is contained in a
cylinder with x0 � 0, and suppose m=2 and Lm=2 p. Then we claim

F� s+1(0, x0){F� s(0, x0), s�m+1. (2.9)

Let D and up be as in Example 2.3 with k=s+1&2p, and consider a
cylindrical domain D$ in R3 with base D/R2, i.e. D$=D_R. By transla-
tion and scaling we may assume D$/0; cf. Example 1.3. Now define a
functional T on L1(0) by

T( f )=|
0

f (x) /D$dx=|
D$

f (x) dx, \ f # L1(0),
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and let u(x) be defined as

u(x)=
(x2

1+x2
2) p&up(x1 , x2)
const.

\x # D$, u(x)=0 in R3"D$,

where

const.=2 pp!(N+2( p&1))(N+2( p&2)) } } } (N+2) N.

Then, in R3, u solves the overdetermined problem

22 pu=1 in D$

�:u
�x:=0 on �D$, |:|�2p&1 (2.10)

sup
|x|�R

|u(x)|�CRs large R, x # D$ (C>0).

Using Green's identity and the fact that D$/0 we see that T vanishes
on F� s+1(0).

Now suppose (2.9) does not hold, i.e. T also vanishes on F� s . Then this
implies that Us solves the overdetermined system (2.10), and thus is identical
with u in R3; due to unique continuation. Since Us=Um+1+�s&1

i=m+1 Pi we
conclude by Theorem 2.1 that |u(x)|=|Us(x)|�C( |x| s&1+1) log( |x|+2),
contradicting (2.10). This proves (2.9).

3. REMARKS AND FURTHER HORIZONS

The assumptions of Theorem 2.6 seems superfluous, as the reader may
already have noticed. Indeed, let P(x) be a polynomial of degree (k�m)
that satisfies the elliptic equation LmP=0. Define the critical zero set of P
by

NP=[x: D:P(x)=0, |:|<m].

Obviously if NP is large, then P#0. The question is how large this set
can be. Our measurements for largeness (Conditions A and B) is of course
far from being optimal or sharp. It is the lack of a general uniqueness
theory for such polynomials that forces us to use these conditions.

However, due to results of Q. Han [h] the set NP consists of a finite
number of C1 manifolds of Hausdorff dimension �(N&2). Actually Q. Han
proves this for general solutions of Lmu=0.

In particular in R3, the critical zero set for any homogeneous harmonic
polynomial consists of the union of a finite number of lines. The number
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of these lines should of course depend on the degree of the polynomial. It
is quite tantalizing to find the exact number of these lines in terms of the
degree of the polynomial. We will illustrate this by the following example.

Example 3.1. In R3, let P�0 be a homogeneous harmonic polynomial
of degree 3, and set N(P)=[x: P(x)=|{P(x)|=0], which we call the
critical zero set of P. By the previous discussions we may assume that
either N(P)=[0], or there are lines lj through the origin such that
N(P)=�k

j=1 lj , for some k�1.

Suppose the latter holds. Then we claim k�3. To cope with this
problem we may use rotation invariance and assume that l1 is the x1 -axis
and l2 /[x3=0]. Set now

P= :
3

j=0

x3& j
1 hj ,

where hj is a homogeneous polynomial of degree j and independent of x1 .
Since P=0 on the x1 -axis and h0 is constant, we must have h0=0. Next,
on the x1 -axis

{P=(2x1h1+h2 , x2
1 �2 h1+x1 �2h2+�2 h3 , x2

1 �3h1+x1 �3 h2+�3 h3)

=(0, x2
1 �2h1 , x2

1 �3h1)=(0, 0, 0),

which gives that h1 is constant and hence zero. It thus follows that

P=x1h2+h3 ,

where hj ( j=2, 3) is a harmonic homogeneous polynomial of degree j and
independent of x1 . Since �1P(x1 , x2 , 0)=h2(x2 , 0)=0 on l2 and h2 is
harmonic, we must have (after if necessary dividing by a constant) P=
x1 x2 x3+h3 . Now P=0 on l2 gives 0=P=h3(x2 , 0) on l2 /[x3=0].
Hence h3=x3 h for some polynomial h of degree 2, and independent of x1 .
Using that P is harmonic we have

0=2P=x3 2h+2�3 h in R3

and in particular on [x3=0], which gives �3h=0 on [x3=0], i.e.,
�3 h=ax3 for some constant a, hence P=x1 x2x3+b(x3

3&3x3x2
2) for some

constant b. Now, by elementary calculus, �3P=0 on l2 /[x3=0] implies
that N(P) & [x3=0]=[x1=3ax2 , x3=0] _ l1 , i.e., l2=[x1=3ax2 ,
x3=0]. Hence if k�3 then lj ( j�3) does not lie in the plane [x3=0].
Since in the rotation the choice of l2 was arbitrary we may conclude that
non of the lines lj {l1 lie in the same plane as that generated by l1 and li
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for i{ j. To sum up we have that the harmonic polynomial h2=�1P (in
x2 , x3 variables) vanishes on the projection of the lines lj ( j�2) on the
x2 x3 -plane. Since h2 has degree 2, it can not vanish on more than two
lines. Hence k�3.

The above example and the discussion preceding it, can be used to prove
Propositions 3.1�3.2 below. First we need a definition.

Condition C(n). A given domain 0 is said to satisfy Condition C(n)
(n being a positive integer) if there is a sequence of points [ y j] in RN"0,
positive numbers Rj � �, and =>0 such that B( y j, =) & 0=< and the
truncated cone 4( y j, Rj , RN"0) contains at least n+1 line segments
emanating from y j and with a length proportional to Rj and such that the
angle between any pair of such segments is less than ?&=, i.e., the limit set
D0 in the proof of Theorem 2.5 contains at least n+1 lines through the
origin.

Proposition 3.1. Let 0 be an unbounded domain in R3, with x0 � 0, and
suppose Lm=2 p (m=2p). Then for each s�m+1 there exists a (large)
n=n(s)>0 such that if Condition C(n) holds for 0, then

F� s(0, x0)=F� (0).

Proposition 3.2. Let 0 be an unbounded domain in R3, with x0 � 0� , and
let Lm=2 p (m=2p). Suppose also Condition C(3) holds for 0. Then

F� 4(0, x0)=F� (0).

Proof of Propositions 3.1 and 3.2. First suppose m=2 (i.e. p=1). Then
following the lines of the proof in Theorem 2.5, we need to show that the
polynomial Pk , whose critical zero set is D0 , is identically zero. But then
Example 3.1 (for k=3) and the discussion preceding it (for the general
case) gives that Pk #0.

Now for m=2p and p>1 we argue as in the proof of part (iv) in
Theorem 2.5. The proof is completed. K

To find the exact value for C(n), remains an open and tantalizing
problem.
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